H-Ras regulation of TRAIL death receptor mediated apoptosis

نویسندگان

  • Jun-Jie Chen
  • William P. Bozza
  • Xu Di
  • Yaqin Zhang
  • William Hallett
  • Baolin Zhang
چکیده

TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

Dihydroartemisinin Enhances Apo2L/TRAIL-Mediated Apoptosis in Pancreatic Cancer Cells via ROS-Mediated Up-Regulation of Death Receptor 5

BACKGROUND Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has recently shown antitumor activity in various cancer cells. Apo2 ligand or tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is regarded as a promising anticancer agent, but chemoresistance affects its efficacy as a treatment strategy. Apoptosis induced by the combination of DHA and Apo2L/TRA...

متن کامل

Anti-proliferative and proapoptotic effects of benzyl isothiocyanate on human pancreatic cancer cells is linked to death receptor activation and RasGAP/Rac1 down-modulation.

Benzyl isothiocyanate can exert anti-tumor effect by arrest of cell cycle progression and induction of apoptosis in human pancreatic cancer cells. Among them, the dissection of the molecular mechanism of induction of apoptosis is important because the knowledge may be exploited for both cancer prevention and treatment. Our studies reported here indicate that BITC-mediated apoptosis involves the...

متن کامل

Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors

Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivat...

متن کامل

Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8.

Although caspase-2 is believed to be involved in death receptor-mediated apoptosis, the exact function, mode of activation, and regulation of caspase-2 remain unknown. Here we show that protein kinase (PK) CK2 phosphorylates procaspase-2 directly at serine-157. When intracellular PKCK2 activity is low or downregulated by specific inhibitors, procaspase-2 is dephosphorylated, dimerized, and acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014